Comments on “Conditional propositions and conditional assertions”

(An)Thony Gillies

Department of Philosophy
University of Michigan

Context and Content Workshop
LSA Institute, July 2005
The Murder Case

- Suspects: Gardener, Driver, Butler
- CK that D has an airtight alibi—$C(w) \subseteq [\neg D]$
- Alice knows: $\neg G$; Bert has misleading evidence that: $\neg B$
- Thus: $C(w) \subseteq [B \lor G]$
- But: Alice is far more certain that $\neg G$ than that $\neg D$
The Murder Case

- Suspects: Gardener, Driver, Butler
- CK that D has an airtight alibi—$C(w) \subseteq \llbracket \neg D \rrbracket$
- **Alice** knows: $\neg G$; **Bert** has misleading evidence that: $\neg B$
- Thus: $C(w) \subseteq \llbracket B \lor G \rrbracket$
- But: **Alice** is *far more* certain that $\neg G$ than that $\neg D$
The Murder Case

- Suspects: Gardener, Driver, Butler
- CK that D has an airtight alibi—$C(w) \subseteq \llbracket \neg D \rrbracket$
- Alice knows: $\neg G$; Bert has misleading evidence that: $\neg B$
- Thus: $C(w) \subseteq \llbracket B \lor G \rrbracket$
- But: Alice is far more certain that $\neg G$ than that $\neg D$
The Murder Case

- Suspects: Gardener, Driver, Butler
- CK that D has an airtight alibi—$C(w) \subseteq \llbracket \neg D \rrbracket$
- Alice knows: $\neg G$; Bert has misleading evidence that: $\neg B$
- Thus: $C(w) \subseteq \llbracket B \lor G \rrbracket$
- But: Alice is far more certain that $\neg G$ than that $\neg D$
This Looks Like Bad News

Pragmatic Constraint (PC)

If $\llbracket P \rrbracket \cap C(w) \neq \emptyset$, then:

if $v \in C(w)$ then $f(\llbracket P \rrbracket, v) \subseteq C(w)$

Belief Constraint (BC)

$f_i(\cdot, w)$ should be closed under i’s conditional beliefs at w

The Murder Case pits these two against each other:

(1) Look, we agree that $B \lor G$ (and each is compatible with our CK); thus if $\neg B$, then G.

Alice objects since: $f_a(\llbracket P \rrbracket, v) \nsubseteq C(w)$ for at least one $v \in C(w)$
This Looks Like Bad News

Pragmatic Constraint (PC)

If $\llbracket P \rrbracket \cap C(w) \neq \emptyset$, then:
if $v \in C(w)$ then $f(\llbracket P \rrbracket, v) \subseteq C(w)$

Belief Constraint (BC)

$f_i(\cdot, w)$ should be closed under i’s conditional beliefs at w

The Murder Case pits these two against each other:

(1) Look, we agree that $B \lor G$ (and each is compatible with our CK); thus if $\neg B$, then G.

Alice objects since: $f_a(\llbracket P \rrbracket, v) \not\subseteq C(w)$ for at least one $v \in C(w)$
Let’s Simplify

All we really need is asymmetry:

- \(w_1^*(B) = 1 \) \(w_2(G) = 1 \) \(w_3(D) = 1 \)
- alice:
 - \(B_a(w_1) = \{w_1\} \) \(B_a(w_2) = \{w_1\} \)
- bert:
 - \(B_b(w_1) = \{w_1, w_2\} \) \(B_b(w_2) = \{w_1, w_2\} \)

Making plausible assumptions about \(f_a(\llbracket \neg B \rrbracket, w_1) \), this causes the same trouble for (PC) + (BC)
Let’s Simplify

All we really need is **asymmetry**:

- $w_1^*(B) = 1$
 - alice:
 - $B_a(w_1) = \{w_1\}$
 - bert:
 - $B_b(w_1) = \{w_1, w_2\}$

- $w_2(G) = 1$
 - $B_a(w_2) = \{w_1\}$

- $w_3(D) = 1$
 - $B_b(w_2) = \{w_1, w_2\}$

Making plausible assumptions about $f_a(\lnot B, w_1)$, this causes the same trouble for (PC) + (BC)
Let’s Simplify

All we really need is asymmetry:

- $w_1^*(B) = 1$
- $w_2(G) = 1$
- $w_3(D) = 1$

alice:

- $B_a(w_1) = \{w_1\}$
- $B_a(w_2) = \{w_1\}$

bert:

- $B_b(w_1) = \{w_1, w_2\}$
- $B_b(w_2) = \{w_1, w_2\}$

Making plausible assumptions about $f_a([\neg B], w_1)$, this causes the same trouble for (PC) + (BC)
Let’s Simplify

All we really need is **asymmetry**:

- $w_1^*(B) = 1 \quad w_2(G) = 1 \quad w_3(D) = 1$
- Alice:
 - $B_a(w_1) = \{w_1\} \quad B_a(w_2) = \{w_1\}$
- Bert:
 - $B_b(w_1) = \{w_1, w_2\} \quad B_b(w_2) = \{w_1, w_2\}$

Making plausible assumptions about $f_a([\neg B], w_1)$, this causes the same trouble for (PC) + (BC)
Let’s Simplify

All we really need is **asymmetry**:

- \(w_1^*(B) = 1 \) \(w_2(G) = 1 \) \(w_3(D) = 1 \)
- **alice**:
 - \(B_a(w_1) = \{w_1\} \) \(B_a(w_2) = \{w_1\} \)
- **bert**:
 - \(B_b(w_1) = \{w_1, w_2\} \) \(B_b(w_2) = \{w_1, w_2\} \)

Making plausible assumptions about \(f_a(⟦\neg B⟧, w_1) \), this causes the same trouble for (PC) + (BC)
Maybe CG ≠ CK

Here’s a quote

“I am inclined to think that that some possible situations that are incompatible with the common knowledge of the parties to a conversation are nevertheless “live options” in that conversation.”

And another

“When it becomes clear that the guilt of the butler is in dispute, so that it is a live option in the context that the butler didn’t do it, Alice should insist that we reopen the possibility that it was the chauffeur. . . . The context set should be expanded to include possibilities compatible with the conditional knowledge of the parties on any condition compatible with the context.”
Maybe CG \neq CK

Here’s a quote

“I am inclined to think that some possible situations that are incompatible with the common knowledge of the parties to a conversation are nevertheless “live options” in that conversation.”

And another

“When it becomes clear that the guilt of the butler is in dispute, so that it is a live option in the context that the butler didn’t do it, Alice should insist that we reopen the possibility that it was the chauffeur. . . . The context set should be expanded to include possibilities compatible with the conditional knowledge of the parties on any condition compatible with the context.”
If I’ve Got the Drift . . . (not a guarantee)

When Alice realizes that w_2 (a not-B world) is being considered in C, she ought to insist that the common ground be $C' = C \cup \{w_3\}$ (plus maybe some others)

Then (PC) runs on C', not C

(2) If $w \in C'$ and $\llbracket P \rrbracket \cap C' \neq \emptyset$, then $f(\llbracket P \rrbracket, w) \in C'$

What’s with the Direct Argument? Is it still good? If so, can Bert just re-run it, pairing C' down to C (by asserting the disjunction) and then posing the conditional to Alice again?
If I’ve Got the Drift . . . (not a guarantee)

When Alice realizes that w_2 (a not-B world) is being considered in C, she ought to insist that the common ground be $C' = C \cup \{w_3\}$ (plus maybe some others)

Then (PC) runs on C', not C

(2) If $w \in C'$ and $\llbracket P \rrbracket \cap C' \neq \emptyset$, then $f(\llbracket P \rrbracket, w) \in C'$

What’s with the Direct Argument? Is it still good? If so, can Bert just re-run it, pairing C' down to C (by asserting the disjunction) and then posing the conditional to Alice again?
If I’ve Got the Drift . . . (not a guarantee)

When Alice realizes that w_2 (a not-B world) is being considered in C, she ought to insist that the common ground be $C' = C \cup \{w_3\}$ (plus maybe some others)

Then (PC) runs on C', not C

(2) If $w \in C'$ and $[P] \cap C' \neq \emptyset$, then $f([P], w) \in C'$

What’s with the Direct Argument? Is it still good? If so, can Bert just re-run it, pairing C' down to C (by asserting the disjunction) and then posing the conditional to Alice again?
A Slightly Different Framework

Common Grounds (Zeevat, Gerbrandy, Jäger)

A common ground C is a pair $\langle s, (R_i)_{i \in G} \rangle$ where

- $s \subseteq W$
- $\bigcup_{i \in G} R_i$ is reflexive
- for each $i \in G$: $\text{dom}(R_i) \subseteq s$

These are nifty:

- $\llbracket \Box_i \phi \rrbracket_C = \{ w : \forall v (wR_i v \Rightarrow v \in \llbracket \phi \rrbracket_C) \}$
- Exactly the facts in C are those that are mutually believed in C
A Slightly Different Framework

Common Grounds (Zeevat, Gerbrandy, Jäger)

A common ground C is a pair $\langle s, (R_i)_{i \in G} \rangle$ where

- $s \subseteq W$
- $\bigcup_{i \in G} R_i$ is reflexive
- for each $i \in G$: $\text{dom}(R_i) \subseteq s$

These are nifty:

- $\llbracket \square_i \phi \rrbracket^C = \{ w : \forall v (wR_iv \Rightarrow v \in \llbracket \phi \rrbracket^C) \}$
- Exactly the facts in C are those that are mutually believed in C
A Slightly Different Framework

Common Grounds (Zeevat, Gerbrandy, Jäger)

A common ground C is a pair $\langle s, (R_i)_{i \in G} \rangle$ where
- $s \subseteq W$
- $\bigcup_{i \in G} R_i$ is reflexive
- for each $i \in G$: $\text{dom}(R_i) \subseteq s$

These are nifty:
- $\llbracket \Box_i \phi \rrbracket^C = \{ w : \forall v (wR_i v \Rightarrow v \in \llbracket \phi \rrbracket^C) \}$
- Exactly the facts in C are those that are mutually believed in C
A Slightly Different Framework

Common Grounds (Zeevat, Gerbrandy, Jäger)

A common ground C is a pair $\langle s, (R_i)_{i \in G} \rangle$ where:

- $s \subseteq W$
- $\bigcup_{i \in G} R_i$ is reflexive
- for each $i \in G$: $\text{dom}(R_i) \subseteq s$

These are nifty:

- $\left[\Box_i \phi\right]^C = \{ w : \forall v (wR_i v \Rightarrow v \in \left[\phi\right]^C) \}$

Exactly the facts in C are those that are mutually believed in C
A Slightly Different Framework

Common Grounds (Zeevat, Gerbrandy, Jäger)

A common ground C is a pair $\langle s, (R_i)_{i \in G} \rangle$ where

- $s \subseteq W$
- $\bigcup_{i \in G} R_i$ is reflexive
- for each $i \in G$: $\text{dom}(R_i) \subseteq s$

These are nifty:

- $\llbracket \square_i \phi \rrbracket^C = \{ w : \forall v \left(wR_i v \Rightarrow v \in \llbracket \phi \rrbracket^C \right) \}$
- Exactly the facts in C are those that are mutually believed in C
What Assertions Do To CGs

We want to keep track of what assertions do to these C’s

Dynamics

a successful assertion of (non-modal) P in C updates C to $C + P$:

- first, add the content: $s \cap \llbracket P \rrbracket^C$
- second, restrict the R_i: $R_i|(s \cap \llbracket P \rrbracket^C)$, each i

It follows that: $C + P \subseteq \llbracket P \rrbracket^C$
What Assertions Do To CGs

We want to keep track of what assertions do to these C’s

Dynamics

a successful assertion of (non-modal) P in C updates C to $C + P$:

- first, add the content: $s \cap \llbracket P \rrbracket^C$
- second, restrict the R_is: $R_i|(s \cap \llbracket P \rrbracket^C)$, each i

It follows that: $C + P \subseteq \llbracket P \rrbracket^C$
What Assertions Do To CGs

We want to keep track of what assertions do to these C’s

Dynamics

A successful assertion of (non-modal) P in C updates C to $C + P$:
- First, add the content: $s \cap [P]^C$
- Second, restrict the R_is: $R_i| (s \cap [P]^C)$, each i

It follows that: $C + P \subseteq [P]^C$
Assertion Pre-Conditions

If an assertion of P in C is to have the intended effect some pre-conditions ought to hold of C—I want to look at one in particular:

(3) It is not common ground that Hearer believes $\neg P$

Suppose asserting an indicative, with antecedent P, in C requires that C meet this P-assertion pre-condition

(4) $C \not\subseteq [\Box_H \neg P]^C$

This pre-condition is most plausible as a default that, if not met, can be accommodated by a willing and cooperative Hearer
Assertion Pre-Conditions

If an assertion of P in C is to have the intended effect some pre-conditions ought to hold of C—I want to look at one in particular:

(3) It is not common ground that Hearer believes $\neg P$

Suppose asserting an indicative, with antecedent P, in C requires that C meet this P-assertion pre-condition

(4) $C \not\subseteq [\square_H \neg P]^C$

This pre-condition is most plausible as a default that, if not met, can be accommodated by a willing and cooperative Hearer.
Assertion Pre-Conditions

If an assertion of P in C is to have the intended effect some pre-conditions ought to hold of C—I want to look at one in particular:

(3) It is not common ground that Hearer believes $\neg P$

Suppose asserting an indicative, with antecedent P, in C requires that C meet this P-assertion pre-condition

(4) $C \not\subseteq \llbracket \Box H \neg P \rrbracket^C$

This pre-condition is most plausible as a default that, if not met, can be accommodated by a willing and cooperative Hearer.
Something Fishy About Bert’s Argument

There is a prediction that Bert’s conditional

(5) If the butler didn’t do it, then the gardener did

is a kind of seriously defective/quasi-assertion: it is common knowledge that Alice believes the butler did it—and we know that she ain’t gonna accommodate the antecedent
Something Fishy About Bert’s Argument

There is a prediction that Bert’s conditional

(5) If the butler didn’t do it, then the gardener did

is a kind of seriously defective/quasi-assertion: it is common knowledge that Alice believes the butler did it—and we know that she ain’t gonna accommodate the antecedent.
Something Fishy About Bert’s Argument

There is a prediction that Bert’s conditional

(5) If the butler didn’t do it, then the gardener did

is a kind of seriously defective/quasi-assertion: it is common knowledge that Alice believes the butler did it—and we know that she ain’t gonna accommodate the antecedent.
Would This Force Rejecting Direct Argument?

Maybe not

- Proper assertion of $P \lor Q$ in C will take us from a common ground in which $P \lor Q$ isn’t presupposed to one, C', in which it is
- Direct Argument requires that in the resulting state C', the indicative is true
Would This Force Rejecting Direct Argument?

Maybe not

- Proper assertion of $P \lor Q$ in C will take us from a common ground in which $P \lor Q$ isn’t presupposed to one, C', in which it is
- Direct Argument requires that in the resulting state C', the indicative is true
Would This Force Rejecting Direct Argument?

Maybe not

- Proper assertion of $P \lor Q$ in C will take us from a common ground in which $P \lor Q$ isn’t presupposed to one, C', in which it is

- Direct Argument requires that in the **resulting** state C', the indicative is true
Other Paths

I am tempted by two very different options (but don’t blame Bob)

1. Privatize!
 - Make the semantics of indicatives more information-dependent
 - Indicatives are epistemic modals scoped over materials
 - Rebuff Edgington’s worry about equivocation by identifying meanings with update potentials

2. Socialize!
 - Make the side-constraints/definedness conditions for indicatives appeal to information “in the group”
 - Makes “asserting” a conditional more like conjecturing that the domain is structured in the way the conditional says

(An)Thony Gillies

LSA 2005
Other Paths

I am tempted by two very different options (but don’t blame Bob)

1 Privatize!
 - Make the semantics of indicatives more information-dependent
 - Indicatives are epistemic modals scoped over materials
 - Rebuff Edgington’s worry about equivocation by identifying meanings with update potentials

2 Socialize!
 - Make the side-constraints/definedness conditions for indicatives appeal to information “in the group”
 - Makes “asserting” a conditional more like conjecturing that the domain is structured in the way the conditional says
Other Paths

I am tempted by two very different options (but don’t blame Bob)

1 Privatize!
 - Make the semantics of indicatives more information-dependent
 - Indicatives are epistemic modals scoped over materials
 - Rebuff Edgington’s worry about equivocation by identifying meanings with update potentials

2 Socialize!
 - Make the side-constraints/definedness conditions for indicatives appeal to information “in the group”
 - Makes “asserting” a conditional more like conjecturing that the domain is structured in the way the conditional says
Another Option

- Change (PC) to (NPC): prefer, first, to return a (set of) world(s) in C but reach outside if the speaker’s beliefs require it
- Require truth (falsity) w.r.t. all antecedent-admissible selection functions for truth (falsity) simpliciter—those allowed by (BC) + (NPC) for the parties to the conversation

Assume i also has a set of fallbacks around $B_i(w)$—system of spheres S_i centered on $B_i(w)$; $S_{[p]} = \text{minimal } p\text{-permitting sphere in } S_i$

NPC

if $[p] \cap C \neq \emptyset$ & $w \in C$ then:

- $f_i([p], w) \subseteq C$, if $[p] \cap B_i(w) \neq \emptyset$
- $f_i([p], w) \subseteq S_{[p]}$, otherwise
Another Option

- Change (PC) to (NPC): prefer, first, to return a (set of) world(s) in C but reach outside if the speaker’s beliefs require it
- Require truth (falsity) w.r.t. all antecedent-admissible selection functions for truth (falsity) simpliciter—those allowed by (BC) + (NPC) for the parties to the conversation

Assume i also has a set of fallbacks around $B_i(w)$—system of spheres S_i centered on $B_i(w)$; $S_{[p]} = \text{minimal } p\text{-permitting sphere in } S_i$

NPC

if $[p] \cap C \neq \emptyset$ & $w \in C$ then:

- $f_i([p], w) \subseteq C$, if $[p] \cap B_i(w) \neq \emptyset$
- $f_i([p], w) \subseteq S_{[p]}$, otherwise
Another Option

- Change (PC) to (NPC): prefer, first, to return a (set of) world(s) in C but reach outside if the speaker’s beliefs require it
- Require truth (falsity) w.r.t. all antecedent-admissible selection functions for truth (falsity) simpliciter—those allowed by (BC) + (NPC) for the parties to the conversation

Assume i also has a set of **fallbacks** around $B_i(w)$—system of spheres S_i centered on $B_i(w)$; $S[p] = \text{minimal } p\text{-permitting sphere in } S_i$

NPC

If $[p] \cap C \neq \emptyset \& w \in C$ then:

- $f_i([p], w) \subseteq C$, if $[p] \cap B_i(w) \neq \emptyset$
- $f_i([p], w) \subseteq S[p]$, otherwise
Another Option

- Change (PC) to (NPC): prefer, first, to return a (set of) world(s) in C but reach outside if the speaker’s beliefs require it.
- Require truth (falsity) w.r.t. all antecedent-admissible selection functions for truth (falsity) simpliciter—those allowed by (BC) + (NPC) for the parties to the conversation.

Assume i also has a set of **fallbacks** around $B_i(w)$—system of spheres S_i centered on $B_i(w)$; $S_{[p]} = \text{minimal } p\text{-permitting sphere in } S_i$.

NPC

if $[p] \cap C \neq \emptyset \land w \in C$ then:

- $f_i([p], w) \subseteq C$, if $[p] \cap B_i(w) \neq \emptyset$
- $f_i([p], w) \subseteq S_{[p]}$, otherwise
(PC) constrains indicatives because it constrains the selection function for conditionals whose antecedents are “compatible” with the context, where compatibility is cashed-out in terms of consistency w/ C.

- A context is a pointed model (M, w) for a fixed set G of relevant parties to the conversation.
- C_c represents CK among G at (M, w).

Generic PC

If $[p]$ is compatible with the context c and $w \in C_c$, then $f_c([p], w) \subseteq C_c$.
And Another

(PC) constrains indicatives because it constrains the selection function for conditionals whose antecedents are “compatible” with the context, where compatibility is cashed-out in terms of consistency w/ C

- A context is a pointed model (M, w) for a fixed set G of relevant parties to the conversation
- C_c represents CK among G at (M, w)

Generic PC

If $[[p]]$ is compatible with the context c and $w \in C_c$, then $f_i([[p]], w) \subseteq C_c$
Another puzzle about ‘if’

Stalnaker’s Suggestion

Quarter-/Half-Baked Thoughts

Even Less Baked Thoughts

And Another

(PC) constrains indicatives because it constrains the selection function for conditionals whose antecedents are “compatible” with the context, where compatibility is cashed-out in terms of consistency w/ C

- A context is a pointed model \((M, w)\) for a fixed set \(G\) of relevant parties to the conversation
- \(C_c\) represents CK among \(G\) at \((M, w)\)

Generic PC

If \(\llbracket p \rrbracket\) is compatible with the context \(c\) and \(w \in C_c\), then

\[f_i(\llbracket p \rrbracket, w) \subseteq C_c \]
We might then try out different tests for “compatibility”:

- $[p]$ is compatible with $c = (M, w)$ iff $[p] \cap B_i(w) \neq \emptyset$, $\forall i \in G$
- Or: $[p] \cap D_c \neq \emptyset$, where $D_c = \bigcap_{i \in G} B_i(w)$
Higher Hurdles

We might then try out different tests for “compatibility”:

1. $\llbracket p \rrbracket$ is compatible with $c = (M, w)$ iff $\llbracket p \rrbracket \cap B_i(w) \neq \emptyset$, $\forall i \in G$
2. Or: $\ldots \ldots \ldots$ iff $\llbracket p \rrbracket \cap D_c \neq \emptyset$, where $D_c = \bigcap_{i \in G} B_i(w)$
Higher Hurdles

We might then try out different tests for “compatibility”:

- $\llbracket p \rrbracket$ is compatible with $c = (M, w)$ iff $\llbracket p \rrbracket \cap B_i(w) \neq \emptyset$, $\forall i \in G$
- Or: $\ldots \ldots\ldots$ iff $\llbracket p \rrbracket \cap D_c \neq \emptyset$, where $D_c = \bigcap_{i \in G} B_i(w)$