A Syntactic Characterization of Morita Equivalence

Dimitris Tsementzis

Princeton University

(arXiv:1507.02302)

August 2, 2016
Overview

1. Introduction

2. T-Morita Equivalence

3. J-Morita \iff T-Morita

4. Generalizations and Questions
Section 1

Introduction
PHILOSOPHICAL QUESTION: What does categorical equivalence mean?
Main Question

PHILOSOPHICAL QUESTION: What does categorical equivalence mean?

MORE PRECISE QUESTION: Let $\mathcal{T}, \mathcal{T}'$ be first-order theories. If $\mathcal{T}\text{-Mod} \simeq \mathcal{T}'\text{-Mod}$, then how are \mathcal{T} and \mathcal{T}' related?
Main Question

PHILOSOPHICAL QUESTION: What does categorical equivalence mean?

MORE PRECISE QUESTION: Let $\mathcal{T}, \mathcal{T}'$ be first-order theories. If $\mathcal{T}\text{-Mod} \simeq \mathcal{T}'\text{-Mod}$, then how are \mathcal{T} and \mathcal{T}' related?

Related work:
- Caramello (2010), Barrett and Halvorson (2016)
- Logic-enriched type theories (e.g. Maietti (2005,2006) and Aczel-Gambino (2006))
Notation and Terminology

- Σ, Σ', \ldots will denote signatures
- x, y, \ldots variables of given sorts and x, y, \ldots tuples of variables
- ϕ, ψ, \ldots formulas over a given signature
- $\phi \vdash_x \psi$ sequent with free variables among the x
- T, T', \ldots will denote coherent theories, i.e. sets of coherent sequents (\exists, \lor, \land)
- $T \models \sigma$ means the sequent σ is derivable from T
- C_T, P_T, E_T
- $\{\mathbf{x}.\phi\}^{[\theta]} \rightarrow \{\mathbf{y}.\psi\}$
- We assume a standard (intuitionistic) sequent calculus, e.g. Johnstone (2003)
J-Morita Equivalence

HISTORY: Morita equivalence of rings: \(R \sim S \) iff \(R \) and \(S \) have equivalent categories of (left) modules.

Definition: Two coherent theories \(T \) and \(T' \) are J-Morita equivalent (\(T \sim_J T' \)) iff \(T\text{-Mod}(E) \cong T'\text{-Mod}(E) \) naturally for any Grothendieck topos \(E \).

Theorem: \(T \sim_J T' \) iff \(T \) and \(T' \) have equivalent classifying toposes (\(E_T \cong E_{T'} \)).

Theorem: \(T \sim_J T' \) iff \(T \) and \(T' \) have equivalent pretopos completions (\(P_T \cong P_{T'} \)).
J-Morita Equivalence

HISTORY: Morita equivalence of rings: $R \sim S$ iff R and S have equivalent categories of (left) modules.

IDEA: Think of models of a theory as analogous to modules of a ring.
J-Morita Equivalence

HISTORY: Morita equivalence of rings: \(R \sim S \) iff \(R \) and \(S \) have equivalent categories of (left) modules.

IDEA: Think of models of a theory as analogous to modules of a ring.

Definition

Two coherent theories \(\mathbb{T} \) and \(\mathbb{T}' \) are **J-Morita equivalent** (\(\mathbb{T} \sim_J \mathbb{T}' \)) iff \(\mathbb{T}\text{-Mod}(\mathcal{E}) \sim \mathbb{T}'\text{-Mod}(\mathcal{E}) \) naturally for any Grothendieck topos \(\mathcal{E} \).
J-Morita Equivalence

HISTORY: Morita equivalence of rings: \(R \sim S \) iff \(R \) and \(S \) have equivalent categories of (left) modules.

IDEA: Think of models of a theory as analogous to modules of a ring.

Definition

Two coherent theories \(\mathbb{T} \) and \(\mathbb{T'} \) are **J-Morita equivalent** (\(\mathbb{T} \sim_J \mathbb{T'} \)) iff \(\mathbb{T} \)-Mod(\(\mathcal{E} \)) \(\simeq \) \(\mathbb{T'} \)-Mod(\(\mathcal{E} \)) naturally for any Grothendieck topos \(\mathcal{E} \).

Theorem

\(\mathbb{T} \sim_J \mathbb{T'} \) iff \(\mathbb{T} \) and \(\mathbb{T'} \) have equivalent classifying toposes (\(\mathcal{E}_\mathbb{T} \simeq \mathcal{E}_{\mathbb{T'}} \)).

Theorem

\(\mathbb{T} \sim_J \mathbb{T'} \) iff \(\mathbb{T} \) and \(\mathbb{T'} \) have equivalent pretopos completions (\(\mathcal{P}_{\mathbb{T}} \simeq \mathcal{P}_{\mathbb{T'}} \)).
Precise Question

MAIN QUESTION: Let T and T' be coherent theories. If T and T' are J-Morita equivalent then how are T and T' related?

IMPRECISE ANSWER: T and T' have a common definitional extension in which you are allowed to define new sorts from old.
MAIN QUESTION: Let \mathcal{T} and \mathcal{T}' be coherent theories. If \mathcal{T} and \mathcal{T}' are J-Morita equivalent then how are \mathcal{T} and \mathcal{T}' related?
MAIN QUESTION: Let \mathcal{T} and \mathcal{T}' be coherent theories. If \mathcal{T} and \mathcal{T}' are J-Morita equivalent then how are \mathcal{T} and \mathcal{T}' related?

IMPRECISE ANSWER: \mathcal{T} and \mathcal{T}' have a common definitional extension in which you are allowed to define new sorts from old.
Section 2

T-Morita Equivalence
Definitional Extension

BASIC IDEA:

T and T' are definitionally equivalent if each defines the symbols of the other.

SET-UP:

Single-sorted signatures $\Sigma_1 \subset \Sigma_2$, T_1 a Σ_1-theory, T_2 a Σ_2-theory.

Definition:

T_1 defines a relation symbol R if there is a Σ_1-formula ϕ such that $T_2 \models \phi(x) \iff x \, R \, x$.

T_1 defines a function symbol f if there is a Σ_1-formula ϕ such that $T_2 \models \phi(x, y) \iff x, y \, f \, (x) = y$.

T_2 is a definitional extension of T_1 iff T_1 defines all symbols in $\Sigma_2 \setminus \Sigma_1$.

Definition:

T and T' are definitionally equivalent if they have a common (up to logical equivalence) definitional extension.
Definitional Extension

BASIC IDEA: T and T' are definitionally equivalent if each defines the symbols of the other.
Definitional Extension

BASIC IDEA: \mathcal{T} and \mathcal{T}' are definitionally equivalent if each defines the symbols of the other.

SET-UP: Single-sorted signatures $\Sigma_1 \subset \Sigma_2$, \mathcal{T}_1 a Σ_1-theory, \mathcal{T}_2 a Σ_2-theory.
Definitional Extension

BASIC IDEA: T and T' are definitionally equivalent if each defines the symbols of the other.

SET-UP: Single-sorted signatures $\Sigma_1 \subset \Sigma_2$, T_1 a Σ_1-theory, T_2 a Σ_2-theory.

Definition

T_1 **defines** a relation symbol R if there is a Σ_1-formula ϕ such that $T_2 \models \phi(x) \vdash x \, R \, x$.

T_1 **defines** a function symbol f if there is a Σ_1-formula ϕ such that $T_2 \models \phi(x, y) \vdash x, y \, f(x) = y$.

T_2 is a **definitional extension** of T_1 iff T_1 defines all symbols in $\Sigma_2 \setminus \Sigma_1$.

Dimitris Tsementzis (Princeton) Syntactic Morita August 2, 2016 7 / 22
Definitional Extension

BASIC IDEA: T and T' are definitionally equivalent if each defines the symbols of the other.

SET-UP: Single-sorted signatures $\Sigma_1 \subset \Sigma_2$, T_1 a Σ_1-theory, T_2 a Σ_2-theory.

Definition

T_1 defines a relation symbol R if there is a Σ_1-formula ϕ such that $T_2 \models \phi(x) \iff x \in R$.

T_1 defines a function symbol f if there is a Σ_1-formula ϕ such that $T_2 \models \phi(x, y) \iff x, y \in f(x) = y$.

T_2 is a **definitional extension** of T_1 iff T_1 defines all symbols in $\Sigma_2 \setminus \Sigma_1$.

Definition

T and T' are **definitionally equivalent** if they have a common (up to logical equivalence) definitional extension.
Defining New Sorts from Old

BASIC IDEA

\(\mathcal{T}\) and \(\mathcal{T}'\) are \(\mathcal{T}\)-Morita equivalent if each defines the symbols and sorts of the other.

SET-UP

Take multi-sorted signatures \(\Sigma_1 \subset \Sigma_2\), \(\mathcal{T}_1\) a \(\Sigma_1\)-theory, \(\mathcal{T}_2\) a \(\Sigma_2\)-theory.

Definition (Four types of sorts)

1. **Product Sorts**:

 \(S_1 \times S_2 \times \cdots \times S_n\),

 \(\pi_i: S_1 \times \cdots \times S_n \rightarrow S_i\) and

 \(\mathcal{T}_2\) contains:

 \[\top \vdash x_i: S_i \quad \exists x: n \prod_{i=1}^n S_i \left(\pi_1(x) = x_1 \land \cdots \land \pi_n(x) = x_n\right)\]

 \[\bigwedge_{i=1}^n \pi_i(x) = x_i \land \bigwedge_{i=1}^n \pi_i(z) = x_i\]

 \(\vdash x_1, \ldots, x_n, x, z = z\).
Defining New Sorts from Old

BASIC IDEA: T and T' are T-Morita equivalent if each defines the symbols and sorts of the other.
Defining New Sorts from Old

BASIC IDEA: \mathbb{T} and \mathbb{T}' are \mathbb{T}-Morita equivalent if each defines the symbols and sorts of the other.

SET-UP: Take multi-sorted signatures $\Sigma_1 \subset \Sigma_2$, \mathbb{T}_1 a Σ_1-theory, \mathbb{T}_2 a Σ_2-theory.

Definition (Four types of sorts)

1. **Product Sorts:** $S_1 \times S_2 \times \cdots \times S_n$, $\pi_i : S_1 \times \cdots \times S_n \to S_i$ and \mathbb{T}_2 contains:

 $\vdash_{x_i : S_i} \exists x : \prod_{i=1}^{n} S_i(\pi_1(x) = x_1 \land \cdots \land \pi_n(x) = x_n)$

 $\left(\bigwedge_{i=1}^{n} \pi_i(x) = x_i \right) \land \left(\bigwedge_{i=1}^{n} \pi_i(z) = x_i \right) \vdash_{x_1, \ldots, x_n, x, z} x = z$
New Sorts from Old

Definition (Four types of sorts, (Barrett and Halvorson (2016)))

1. **Coproduct Sorts**: \(S_1 \sqcup S_2 \cdots \sqcup S_n, \rho_i : S_i \rightarrow S_1 \sqcup \cdots \sqcup S_n \) and \(T_2 \) contains

\[
\top \vdash x : \bigsqcup_{i=1}^n S_i \ \forall x_i \in S_i (\rho_i(x_i) = x)
\]

\[
\rho_i(x_i) = x \land \rho_i(x_i') = x \vdash x_i, x_i', x \ x_i = x_i' \ \text{for all } i = 1, \ldots, n
\]

\[
\rho_i(x_i) = x \land \rho_j(x_j) = x \vdash x_i : s_i, x_j : s_j \downarrow \ \text{for all } i \neq j \in \{1, \ldots, m\}
\]

2. **Subsorts**: \(S \subset T, \phi, i : S \rightarrow T \) and \(T_2 \) contains

\[
\phi(x) \vdash x : T \ \forall y : S(i(y) = x) \quad i(x) = i(y) \vdash x, y : s \ x = y
\]

3. **Quotient Sorts**: \(S = T/\sim, \top_1\)-provable equivalence relation \(\phi \), \(\epsilon : T \rightarrow S \) if \(T_2 \) contains:

\[
\epsilon(x) = \epsilon(y) \vdash x, y : T \ \phi(x, y) \quad \top \vdash x : S \ \exists y : T(\epsilon(y) = x)
\]
T-Morita Extension and Equivalence

Definition (Barrett and Halvorson (2016))

1. **\(T_1 \) defines** a sort symbol \(S \in \Sigma_2\text{-Sort} \setminus \Sigma_1\text{-Sort} \) if \(S \) is either a product, coproduct, quotient or subsort in the above sense.
2. **\(T_2 \) is a Morita extension of \(T_1 \)** if \(T_1 \) defines all relation, function and sort symbols in \(\Sigma_2 \setminus \Sigma_1 \).

NOTE: Essentially the notion of bi-interpretability in the sense of Pitts (1989).
T-Morita Extension and Equivalence

Definition (Barrett and Halvorson (2016))

\mathcal{T}_1 defines a sort symbol $S \in \Sigma_2\text{-Sort} \setminus \Sigma_1\text{-Sort}$ if S is either a product, coproduct, quotient or subsort in the above sense.

\mathcal{T}_2 is a **Morita extension** of \mathcal{T}_1 if \mathcal{T}_1 defines all relation, function and sort symbols in $\Sigma_2 \setminus \Sigma_1$.

Definition (Barrett and Halvorson (2016))

\mathcal{T} and \mathcal{T}' are **T-Morita equivalent** if there is a “Morita span” from \mathcal{T} to \mathcal{T}'.

NOTE: Essentially the notion of bi-interpretability in the sense of Pitts (1989).
T-Morita Extension and Equivalence

Definition (Barrett and Halvorson (2016))

T_1 defines a sort symbol $S \in \Sigma_2\text{-Sort} \setminus \Sigma_1\text{-Sort}$ if S is either a product, coproduct, quotient or subsort in the above sense.

T_2 is a **Morita extension** of T_1 if T_1 defines all relation, function and sort symbols in $\Sigma_2 \setminus \Sigma_1$.

Definition (Barrett and Halvorson (2016))

T and T' are **T-Morita equivalent** if there is a “Morita span” from T to T'.

\[
T_m = T'_n
\]

\[
T_1 \quad \text{m.e.} \quad T'_1
\]
MAIN QUESTION: Let \mathcal{T} and \mathcal{T}' be coherent theories. If \mathcal{T} and \mathcal{T}' are J-Morita equivalent then how are \mathcal{T} and \mathcal{T}' related?

Precise Answer to Main Question

\mathcal{T} and \mathcal{T}' are T-Morita equivalent.

(Theorem (Main Theorem))

Coherent theories \mathcal{T} and \mathcal{T}' are J-Morita equivalent iff they are T-Morita equivalent.
MAIN QUESTION: Let \mathcal{T} and $\mathcal{T'}$ be coherent theories. If \mathcal{T} and $\mathcal{T'}$ are J-Morita equivalent then how are \mathcal{T} and $\mathcal{T'}$ related?

PRECISE ANSWER: \mathcal{T} and $\mathcal{T'}$ are T-Morita equivalent.
MAIN QUESTION: Let \mathcal{T} and \mathcal{T}' be coherent theories. If \mathcal{T} and \mathcal{T}' are J-Morita equivalent then how are \mathcal{T} and \mathcal{T}' related?

PRECISE ANSWER: \mathcal{T} and \mathcal{T}' are T-Morita equivalent. (!!)
MAIN QUESTION: Let \mathbb{T} and \mathbb{T}' be coherent theories. If \mathbb{T} and \mathbb{T}' are J-Morita equivalent then how are \mathbb{T} and \mathbb{T}' related?

PRECISE ANSWER: \mathbb{T} and \mathbb{T}' are T-Morita equivalent. (!!) (‘!!’ ?)
MAIN QUESTION: Let T and T' be coherent theories. If T and T' are J-Morita equivalent then how are T and T' related?

PRECISE ANSWER: T and T' are T-Morita equivalent. (!!) ("!!" ?)

Theorem (Main Theorem)

Coherent theories T and T' are J-Morita equivalent iff they are T-Morita equivalent.
Section 3

J-Morita ⇔ T-Morita
FACTS: Every coherent category can be equipped with the coherent Grothendieck topology. The syntactic category of a coherent theory is a coherent category.
T-Morita \Rightarrow J-Morita

FACTS: Every coherent category can be equipped with the coherent Grothendieck topology. The syntactic category of a coherent theory is a coherent category.
FACTS: Every coherent category can be equipped with the coherent Grothendieck topology. The syntactic category of a coherent theory is a coherent category.
T-Morita \Rightarrow J-Morita

FACTS: Every coherent category can be equipped with the coherent Grothendieck topology. The syntactic category of a coherent theory is a coherent category.

\[WTS: \mathcal{E}_T \simeq \mathcal{E}'_T \]

\[T_m = T'_n \]

\[\begin{array}{ccc}
T & \xrightarrow{\text{m.e.}} & T_1 \\
\downarrow & & \downarrow \\
T & & T'_1 \\
\end{array} \quad \begin{array}{ccc}
T'_1 & \xrightarrow{\text{m.e.}} & T' \\
\downarrow & & \downarrow \\
T' & & T' \\
\end{array} \]
FACTS: Every coherent category can be equipped with the coherent Grothendieck topology. The syntactic category of a coherent theory is a coherent category.

\[\mathcal{E}_T \simeq \mathcal{E}'_T \]

WTS: The syntactic categories are equivalent.

Diagram:

\[T^m = T'_n \]

\[T_1 \]

\[m.e. \]

\[T \]

\[T' \]

\[T'_1 \]

\[m.e. \]

\[T' \]
FACTS: Every coherent category can be equipped with the coherent Grothendieck topology. The syntactic category of a coherent theory is a coherent category.

WTS: $\mathcal{E}_T \simeq \mathcal{E}'_T$

\[i: C_\mathcal{T_1} \rightarrow C_\mathcal{T} \]
\[T_1 \quad m.e. \quad T' \]
\[T_m = T'_n \]

Dimitris Tsementzis (Princeton)
Syntactic Morita
August 2, 2016
12 / 22
FACTS: Every coherent category can be equipped with the coherent Grothendieck topology. The syntactic category of a coherent theory is a coherent category.

\[
\begin{align*}
\text{WTS: } & \mathcal{E}_T \simeq \mathcal{E}'_T \\
\end{align*}
\]

\[
\begin{array}{c}
\mathcal{E}_T & \stackrel{\mathcal{C}_T}{\leftarrow} & \mathcal{C}_{T_1} \\
\mathcal{E}_{T_1} & \downarrow{\scriptscriptstyle i^*} & \downarrow{\scriptscriptstyle i} \\
\mathcal{T} & \downarrow{\scriptscriptstyle \text{m.e.}} & \mathcal{T}' \\
\mathcal{T}_1 & \downarrow{\scriptscriptstyle \text{m.e.}} & \mathcal{T}_1 \\
\mathcal{T}' & \downarrow{\scriptscriptstyle \text{m.e.}} & \mathcal{T}' \\
\end{array}
\]
FACTS: Every coherent category can be equipped with the coherent Grothendieck topology. The syntactic category of a coherent theory is a coherent category.

\[\mathcal{E}_T \cong \mathcal{E}_T' \]

WTS: \(\mathcal{E}_T \cong \mathcal{E}_T' \)

\[\begin{align*}
\mathcal{E}_T \quad & \quad \mathcal{C}_T \\
i^* \quad & \quad i
\end{align*} \]

NTS: \(i^* \) is an equivalence

\[\begin{align*}
\mathcal{T}_m & = \mathcal{T}_n \\
\mathcal{T}_1 & \quad \mathcal{T}_1' \\
\mathcal{T}' & \quad \mathcal{T}'
\end{align*} \]
Theorem

Let T_2 be a Morita extension of T_1 and $i : C_{T_1} \hookrightarrow C_{T_2}$ the canonical inclusion. Then $i^* : \text{Sh}(C_{T_1}, J_1) \to \text{Sh}(C_{T_2}, J_2)$ is an equivalence.
Theorem

Let \mathbb{T}_2 be a Morita extension of \mathbb{T}_1 and $i: C_{\mathbb{T}_1} \hookrightarrow C_{\mathbb{T}_2}$ the canonical inclusion. Then $i^*: \text{Sh}(C_{\mathbb{T}_1}, J_1) \to \text{Sh}(C_{\mathbb{T}_2}, J_2)$ is an equivalence.

IDEA: Use Comparison Lemma (Verdier, SGA4).
Let T_2 be a Morita extension of T_1 and $i: C_{T_1} \hookrightarrow C_{T_2}$ the canonical inclusion. Then $i^*: Sh(C_{T_1}, J_1) \to Sh(C_{T_2}, J_2)$ is an equivalence.

IDEA: Use Comparison Lemma (Verdier, SGA4).

→ Allows us to compare sheaf toposes through underlying sites.
Comparison Lemma

FACT: For \((\mathcal{C}, J)\) any site and \(i: \mathcal{D} \hookrightarrow \mathcal{C}\) a full and faithful functor there is a topology \(J_{\mathcal{D}}\) on \(\mathcal{D}\) which we call the *induced topology* defined for every \(A\) in \(\mathcal{D}\) by \(J_{\mathcal{D}}(A) = J(A) \cap \text{Sieves}(\mathcal{D})\). \((\mathcal{D}, J_{\mathcal{D}})\) is the *induced site*.
Comparison Lemma

FACT: For \((C, J)\) any site and \(i: D \rightarrow C\) a full and faithful functor there is a topology \(J_D\) on \(D\) which we call the *induced topology* defined for every \(A\) in \(D\) by \(J_D(A) = J(A) \cap \text{Sieves}(D)\). \((D, J_D)\) is the *induced site*.

Lemma (Comparison Lemma)

Let \((C, J)\) be a site and let \(i: D \rightarrow C\) be a full and faithful functor and let \((D, J_D)\) be the induced site. If every object \(A\) of \(C\) has a covering sieve \(R \in J(A)\) generated by arrows all of whose domains are in \(D\), then \(i^*\) is an equivalence.

\((C_{\mathbb{T}_2}, J_2)\)
Comparison Lemma

FACT: For (\mathcal{C}, J) any site and $i: \mathcal{D} \hookrightarrow \mathcal{C}$ a full and faithful functor there is a topology $J_\mathcal{D}$ on \mathcal{D} which we call the *induced topology* defined for every A in \mathcal{D} by $J_\mathcal{D}(A) = J(A) \cap \text{Sieves}(\mathcal{D})$. $(\mathcal{D}, J_\mathcal{D})$ is the *induced site*.

Lemma (Comparison Lemma)

Let (\mathcal{C}, J) be a site and let $i: \mathcal{D} \hookrightarrow \mathcal{C}$ be a full and faithful functor and let $(\mathcal{D}, J_\mathcal{D})$ be the induced site. If every object A of \mathcal{C} has a covering sieve $R \in J(A)$ generated by arrows all of whose domains are in \mathcal{D}, then i^* is an equivalence.

\[
\begin{tikzcd}
(\mathcal{C}_T_2, J_2) \ar[hookrightarrow]{d}[swap]{i} \\
(\mathcal{C}_T_1, J_1)
\end{tikzcd}
\]
Comparison Lemma

FACT: For \((C, J)\) any site and \(i : D \hookrightarrow C\) a full and faithful functor there is a topology \(J_D\) on \(D\) which we call the *induced topology* defined for every \(A\) in \(D\) by \(J_D(A) = J(A) \cap \text{Sieves}(D)\). \((D, J_D)\) is the *induced site*.

Lemma (Comparison Lemma)

Let \((C, J)\) be a site and let \(i : D \hookrightarrow C\) be a full and faithful functor and let \((D, J_D)\) be the induced site. If every object \(A\) of \(C\) has a covering sieve \(R \in J(A)\) generated by arrows all of whose domains are in \(D\), then \(i^*\) is an equivalence.

\[
\begin{array}{ccc}
(C_{T_2}, J_2) & \\ \uparrow i & \\ (C_{T_1}, J_1) & \\
\end{array}
\]

1. \(i\) is full and faithful
2. Covering condition

\((0)\) \(J_1 = J_2\big|_{C_{T_1}}\)
Codes

IDEA: Formulas coding “new” variables in terms of old ones.

Definition

A code for $x \in \text{Var}(\Sigma_2 \setminus \Sigma_1)^n$ is a Σ_2-formula

$$
\xi(x, y, y_1, \ldots, y_n) \equiv \bigwedge_{i=1}^n \xi_i(x_i, y_i, y_i)
$$

where

$$
\xi_i \equiv \begin{cases}
\bigwedge \pi_k(x_i) = y_{ik} & \text{if } x_i \text{ is of product sort} \\
\rho_k(y_{ik}) = x_i & \text{if } x_i \text{ is of coproduct sort} \\
\iota(x_i) = y_i & \text{if } x_i \text{ is of a subsort} \\
\epsilon(y_i) = x_i & \text{if } x_i \text{ is of a quotient sort}
\end{cases}
$$
Key Lemma

Lemma ("Recoding of formulas")

Let $\psi(y, x)$ be a Σ_2-formula with x “new” and y “old” variables. Then

$$T_2 \models \psi(y, x) \vdash \bigvee_j \exists z_j (\xi_j(x, z_j) \land \psi_j^*(y, z_j))$$

where each ξ_j is a code and each ψ_j^* is a Σ_1-formula. In addition, each

$$\theta_j \equiv \xi_j(x, z_j) \land \psi_j^*(y, z_j)$$

is a T_2-provably functional relation from ψ_j^* to ψ, i.e. defines a morphism

$$[\theta_j]: \{y, z_j.\psi_j^*\} \to \{x, y.\psi\}$$

in C_{T_2}.
T-Morita \Rightarrow J-Morita

Covering Condition: Every object of C_T^2 has a covering sieve generated by arrows all of whose domains are in C_T^1.

KEY LEMMA $\Rightarrow (1)$: Faithful: Easy, assuming conservativity result.

Full: By KL $\left[\theta \right]: \{x.\phi\} \rightarrow \{y.\psi\}$ is T^2-equivalent to a Σ_1-formula and hence is in the image of i.

KEY LEMMA $\Rightarrow (2)$: Let $\{y, x.\psi\}$ be an object of C_T^2 with y variables of sorts in Σ_1 and x variables of sorts in Σ_2. By KL there are (finitely many) morphisms $\left[\theta_j \right]: \{y, z_j.\psi^*_j\} \rightarrow \{y, x.\psi\}$ where each θ_j is of the appropriate form. Their images are given by the subobjects $\left[\exists z_j \theta_j \right]: \{y, x.\exists z_j \theta_j\} \hookrightarrow \rightarrow \{y, x.\psi\}$ and the union of all these subobjects is given by the following subobject $\left[\bigvee_j \exists z_j \theta_j \right]: \{y, x.\bigvee_j \exists z_j \theta_j\} \hookrightarrow \rightarrow \{y, x.\psi\}$.

By KL we have $T^2|\ = \bigvee_j \exists z_j \theta_j \dashv \vdash \psi$ which implies that $\left[\bigvee_j \exists z_j \theta_j \right]$ is the maximal subobject and hence the family $\left[\theta_j \right]$ generates a J^2-cover. Since all ψ^*_j are Σ_1-formulas, we are done.
T-Morita \Rightarrow J-Morita

1. i is full and faithful
2. Covering Condition: Every object of C_{T_2} has a covering sieve generated by arrows all of whose domains are in C_{T_1}
T-Morita ⇒ J-Morita

1. i is full and faithful

2. Covering Condition: Every object of \mathcal{C}_{T_2} has a covering sieve generated by arrows all of whose domains are in \mathcal{C}_{T_1}

KEY LEMMA ⇒ (1): Faithful: Easy, assuming conservativity result. Full: By KL $[\theta]$: $\{x.\phi\} \rightarrow \{y.\psi\}$ is T_2-equivalent to a Σ_1-formula and hence is in the image of i.
T-Morita \Rightarrow J-Morita

1. i is full and faithful

2. Covering Condition: Every object of \mathcal{C}_{T_2} has a covering sieve generated by arrows all of whose domains are in \mathcal{C}_{T_1}

KEY LEMMA \Rightarrow (1): Faithful: Easy, assuming conservativity result.
Full: By KL $[\theta]: \{x.\phi\} \rightarrow \{y.\psi\}$ is T_2-equivalent to a Σ_1-formula and hence is in the image of i.

KEY LEMMA \Rightarrow (2): Let $\{y, x.\psi\}$ be an object of \mathcal{C}_{T_2} with y variables of sorts in Σ_1 and x variables of sorts in Σ_2. By KL there are (finitely many) morphisms $[\theta_j]: \{y, z_j.\psi^*_j\} \rightarrow \{y, x.\psi\}$ where each θ_j is of the appropriate form. Their images are given by the subobjects $[\exists z_j \theta_j]: \{y, x.\exists z_j \theta_j\} \hookrightarrow \{y, x.\psi\}$ and the union of all these subobjects is given by the following subobject $[\vee_j \exists z_j \theta_j]: \{y, x. \vee_j \exists z_j \theta_j\} \hookrightarrow \{y, x.\psi\}$. By KL we have $T_2 \models \vee_j \exists z_j \theta_j \vdash \psi$ which implies that $[\vee_j \exists z_j \theta_j]$ is the maximal subobject and hence the family $[\theta_j]$ generates a J_2-cover. Since all ψ^*_j are Σ_1-formulas, we are done.
J-Morita ⇒ T-Morita

IDEA: Construct a “Morita span” from \mathbb{T} to \mathbb{T}' by hand, using the pretopos completion as a “bridge”.

IDEA: Construct a “Morita span” from \mathbb{T} to \mathbb{T}' by hand, using the pretopos completion as a “bridge”.

\[
\begin{array}{c}
\mathbb{T} \\
\mathbb{T}'
\end{array}
\]
J-Morita \Rightarrow T-Morita

IDEA: Construct a “Morita span” from \mathbb{T} to \mathbb{T}' by hand, using the pretopos completion as a “bridge”.

By J-Morita $\quad \mathcal{P}_T \simeq \mathcal{P}_{T'}$

$\mathbb{T} \quad \mathbb{T}'$
J-Morita \Rightarrow T-Morita

IDEA: Construct a “Morita span” from \mathbb{T} to \mathbb{T}' by hand, using the pretopos completion as a “bridge”.

By J-Morita

$$\mathcal{P}_\mathbb{T} \sim \mathcal{P}'_{\mathbb{T}}$$

$$\mathbb{T}\mathcal{P}_\mathbb{T} \sim \mathbb{T}\mathcal{P}'_{\mathbb{T}}$$
J-Morita \Rightarrow T-Morita

IDEA: Construct a “Morita span” from \mathbb{T} to \mathbb{T}' by hand, using the pretopos completion as a “bridge”.

By J-Morita

$$\mathcal{P}_T \simeq \mathcal{P}'_T$$

$$\mathbb{T} \mathcal{P}_T \sim \mathbb{T} \mathcal{P}'_T$$

$$\mathbb{T} \mathcal{C}_T \sim \mathbb{T} \mathcal{C}'_T$$

$$\mathbb{T} \quad \mathbb{T}'$$
J-Morita ⇒ T-Morita

IDEA: Construct a “Morita span” from \mathbb{T} to \mathbb{T}' by hand, using the pretopos completion as a “bridge”.

- **By J-Morita**

 $\mathcal{P}_T \simeq \mathcal{P}'_T$

- **By original Makkai-Reyes construction**

 $\mathbb{T}\mathcal{P}_T \sim \mathbb{T}\mathcal{P}'_T$

 $\mathbb{T}\mathcal{C}_T \sim \mathbb{T}\mathcal{C}'_T$

 \mathbb{T}

 \mathbb{T}'
J-Morita ⇒ T-Morita

IDEA: Construct a “Morita span” from \mathbb{T} to \mathbb{T}' by hand, using the pretopos completion as a “bridge”.

- **By J-Morita**

- **By original Makkai-Reyes construction**

\[
\begin{align*}
\mathcal{P}_T & \simeq \mathcal{P}'_T \\
\mathbb{T}\mathcal{P}_T & \sim \mathbb{T}\mathcal{P}'_T \\
\mathbb{T}\mathcal{C}_T & \mathbb{T}\mathcal{C}'_T \\
\mathbb{T} & \sim \mathbb{T}'
\end{align*}
\]
IDEA: Construct a “Morita span” from \mathbb{T} to \mathbb{T}' by hand, using the pretopos completion as a “bridge”.

By J-Morita

By original Makkai-Reyes construction

Is $\mathbb{T} \sim_{\mathbb{T}} \mathbb{T}C_{\mathbb{T}}$?
Lemma

Let \mathbb{T} be a coherent theory. Then \mathbb{T} is T-Morita equivalent to the theory of its syntactic category $C_\mathbb{T}$.

Proof Sketch:

$\hat{T} = \tilde{T}$

$\hat{T} C_\mathbb{T}$

$(S_1 \times \cdots \times S_n)$

$\{x_1, \ldots, x_n. \phi\}$

Choose $\Sigma_\mathbb{T} \subseteq \hat{\Sigma}$

Add non-logical symbols

Add explicit definitions

Add products

Add subsorts
Lemma

Let \mathbb{T} be a coherent theory. Then \mathbb{T} is T-Morita equivalent to the theory of its syntactic category $\mathcal{C}_\mathbb{T}$.

Proof Sketch:
Lemma

Let \mathbb{T} be a coherent theory. Then \mathbb{T} is T-Morita equivalent to the theory of its syntactic category \mathcal{C}_T.

Proof Sketch:

\[
\begin{array}{c}
S_1 \times \cdots \times S_n \\
\text{add products}
\end{array}
\xrightarrow{T_1}
\begin{array}{c}
\mathbb{T}_1 \\
\mathbb{T}
\end{array}
\xrightarrow{\mathbb{T}C_T}
\begin{array}{c}
S_1, \ldots, S_n \\
\end{array}
\]
Lemma

Let \mathbb{T} be a coherent theory. Then \mathbb{T} is T-Morita equivalent to the theory of its syntactic category $\mathcal{C}_\mathbb{T}$.

Proof Sketch:

\[
(S_1 \times \cdots \times S_n) \phi \\
\{x_1, \ldots, x_n, \phi\}
\]

(\begin{array}{c}
S_1 \times \cdots \times S_n \\
S_1, \ldots, S_n
\end{array})

\hat{T}

\begin{array}{c}
\text{add subsorts} \\
\text{add products}
\end{array}

\begin{array}{c}
\mathbb{T} \\
\mathbb{T}_1
\end{array}

\mathbb{T}_C\mathbb{T}
Lemma

Let \mathbb{T} be a coherent theory. Then \mathbb{T} is T-Morita equivalent to the theory of its syntactic category $\mathcal{C}_\mathbb{T}$.

Proof Sketch:

\[
\begin{align*}
(S_1 \times \cdots \times S_n)_{\phi} & \quad \{x_1, \ldots, x_n. \phi\} \\
S_1 \times \cdots \times S_n & \quad \text{add products} \\
S_1, \ldots S_n & \quad \text{add non-logical symbols} \\
\mathbb{S}_1 \times \cdots \times \mathbb{S}_n & \quad \text{add explicit definitions} \\
\mathbb{T} & \quad \text{add subsorts} \\
\hat{\mathbb{T}} & \\
\mathbb{T}_1 & \\
\hat{\mathbb{T}} & \\
\mathbb{T} & \\
\text{Choose } \Sigma_\mathbb{T} \subset \hat{\Sigma} & \\
\mathbb{T}_{\mathcal{C}_\mathbb{T}} &
\end{align*}
\]
Lemma

Let \mathbb{T} be a coherent theory. Then \mathbb{T} is T-Morita equivalent to the theory of its syntactic category $C_\mathbb{T}$.

Proof Sketch:

\[
\begin{align*}
(S_1 \times \cdots \times S_n)_\phi & \quad \{x_1, \ldots, x_n. \phi\} \\
S_1 \times \cdots \times S_n & \quad \{S_1, \ldots, S_n\} \\
\mathbb{T} & \quad \mathbb{T}_{\Sigma} \\
\hat{\mathbb{T}} & \quad \tilde{\mathbb{T}} \\
\text{add non-logical symbols} & \quad \text{add explicit definitions} \\
\text{add subsorts} & \quad \text{add products} \\
\text{choose } \Sigma_\mathbb{T} \subset \hat{\Sigma} & \quad \mathbb{T}C_\mathbb{T}
\end{align*}
\]
Lemma

Let \mathbb{T} be a coherent theory. Then \mathbb{T} is T-Morita equivalent to the theory of its syntactic category \mathcal{C}_T.

Proof Sketch:

\[
\begin{align*}
(S_1 \times \cdots \times S_n) & \phi \\
\{x_1, \ldots, x_n. \phi\} & \\
S_1 \times \cdots \times S_n & \end{align*}
\]

add non-logical symbols

add explicit definitions

Choose $\Sigma_T \subset \hat{\Sigma}$

add products

add subsorts

$\hat{\mathbb{T}} = \tilde{\mathbb{T}}$

\mathbb{T}_1

\mathbb{T}_C
Lemma

Let \mathbb{T} be a coherent theory. Then \mathbb{T} is T-Morita equivalent to the theory of its syntactic category $C_{\mathbb{T}}$.

Proof Sketch:

1. $(S_1 \times \cdots \times S_n)_{\phi}$
2. $\{x_1, \ldots, x_n. \phi\}$
3. $S_1 \times \cdots \times S_n$
4. $S_1, \ldots S_n$

5. $\hat{T} = \tilde{T}$
6. add non-logical symbols
7. add explicit definitions
8. add subsorts
9. add products
10. Choose $\Sigma_T \subset \hat{\Sigma}$
11. T_{C_T}
Section 4

Generalizations and Questions
Generalizations

The **MAIN THEOREM** “generalizes” easily to other fragments of first-order logic (cartesian, regular, geometric) by appropriately modifying the definition of T-Morita equivalence. E.g. for geometric theories allow infinitary coproducts.
Generalizations

The **MAIN THEOREM** “generalizes” easily to other fragments of first-order logic (cartesian, regular, geometric) by appropriately modifying the definition of T-Morita equivalence. E.g. for geometric theories allow infinitary coproducts.

For intuitionistic FOL\textsubscript{=} we don’t have a notion of J-Morita equivalence. But the result can be restated if we restrict our semantics to Heyting pretoposes. This follows essentially from Pitts (1989).
Generalizations

The **MAIN THEOREM** “generalizes” easily to other fragments of first-order logic (cartesian, regular, geometric) by appropriately modifying the definition of T-Morita equivalence. E.g. for geometric theories allow infinitary coproducts.

For intuitionistic FOL we don’t have a notion of J-Morita equivalence. But the result can be restated if we restrict our semantics to Heyting pretoposes. This follows essentially from Pitts (1989).

For classical FOL we get something slightly more interesting:

Theorem

Let \mathbb{T} and \mathbb{T}' be first-order theories. Then they are T-Morita equivalent if and only if their Morleyizations \mathbb{T}_m and \mathbb{T}'_m are J-Morita equivalent as coherent theories.
Some Questions and a Criticism

1. Syntactic characterizations for (non-natural) equivalences $T\text{-Mod}(E) \simeq T'\text{-Mod}(E)$ for specific E, e.g. Set?

2. Higher analogues for theories that naturally give rise to higher categories of models? (Need to vary both T and E.)

3. Criticism: I now think the most natural thing to consider is the groupoid of models of a theory. (An n-theory has an n-groupoid of models.)
Some Questions and a Criticism

1. Syntactic characterizations for (non-natural) equivalences $\mathbb{T}\text{-Mod}(\mathcal{E}) \simeq \mathbb{T}'\text{-Mod}(\mathcal{E})$ for specific \mathcal{E}, e.g. \textbf{Set}?

Criticism: I now think the most natural thing to consider is the groupoid of models of a theory. (An n-theory has an n-groupoid of models.)
Some Questions and a Criticism

1. Syntactic characterizations for (non-natural) equivalences $\mathbb{T}\text{-Mod}(\mathcal{E}) \simeq \mathbb{T}'\text{-Mod}(\mathcal{E})$ for specific \mathcal{E}, e.g. Set?

2. Higher analogues for theories that naturally give rise to higher categories of models? (Need to vary both \mathbb{T} and \mathcal{E}.)

Criticism: I now think the most natural thing to consider is the groupoid of models of a theory. (An n-theory has an n-groupoid of models.)
Some Questions and a Criticism

1. Syntactic characterizations for (non-natural) equivalences $\mathbb{T} \text{-Mod}(\mathcal{E}) \simeq \mathbb{T}' \text{-Mod}(\mathcal{E})$ for specific \mathcal{E}, e.g. \textbf{Set}?

2. Higher analogues for theories that naturally give rise to higher categories of models? (Need to vary both \mathbb{T} and \mathcal{E}.)

3. Criticism: I now think the most natural thing to consider is the groupoid of models of a theory. (An n-theory has an n-groupoid of models.)
Thank you